Marietta City Schools

2023-2024 District Unit Planner

Accelerated Grade 6/7 Mathematics					
Unit title	Unit 1: Exploring Real-Life Phenomena Through Statistics	MYP year	1	Unit duration (hrs)	15 hours total

Mastering Content and Skills through INQUIRY (Establishing the purpose of the Unit): What will students learn?

GA DoE Standards

Standards

- 6.NR.2: Apply operations with whole numbers, fractions and decimals within relevant applications.
- 7.PAR.4.10: Predict characteristics of a population by examining the characteristics of a representative sample. Recognize the potential limitations and scope of the sample to the population.
- 7.PAR.4.11: Analyze sampling methods and conclude that random sampling produces and supports valid inferences.
- 7.PAR.4.12: Use data from repeated random samples to evaluate how much a sample mean is expected to vary from a population mean. Simulate multiples of the same size.
- 6.MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals.
- MCS.Gifted.S1A. Formulate thought-provoking questions to guide in depth research
- MCS.Gifted.S3A. Develop and apply core critical thinking skills of metacognition, observation, questioning, prediction, analysis, interpretation, inference, summarization, evaluation, synthesis, explanation, and transference.

Concepts/Skills to support mastery of standards

[^0]| Expectations | | Evidence of Student Learning
 (not all inclusive; see Grade Level Overview for more details) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6.NR.2.1 | Describe and interpret the center of the distribution by the equal share value (mean). | Age/Developmentally Approp
 - The concept of mean visually and concept the formula.
 - This is the beginning the concept of meas continue to be deve | riate should be explored ally before introducing
 f the progression of res of center and will ped in $6^{\text {th }}$ grade. | Strategies and Methods
 - Students should be given the opportunity to use manipulatives such as: snap cubes, tiles, etc...to model equal share value. | Example
 - "If we combined all of the 5 th grade students' candies and shared them equally with each student so everyone has the same number of candies." (This is the mean or equal share value.) |
| 6.NR.2.2 | Summarize categorical and quantitative (numerical) data sets in relation to the context: display the distributions of quantitative (numerical) data in plots on a number line, including dot plots, histograms, and box plots and display the distribution of categorical data using bar graphs. | Fundamentals
 - Students have experience with displaying categorical data using bar graphs from elementary grades. In sixth grade, students are extending their understanding of analyzing categorical data | Strategies and Methods
 - As a result of an investigation, students should summarize categorical and quantitative (numerical) data sets in relation to the context.
 - Students should be able to describe the | Age/Developmentally Appropriate
 - Sixth grade students should be able to create dot plots and box plots to analyze the results of an investigation.
 - Sixth grade students should focus on describing and interpreting data displayed.
 - Students should be able to identify that each quartile presented in a box plot | Examples
 - Categorical Example: |

[^1]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

6.NR.2.3	Interpret numerical data to answer a statistical investigative question created. Describe the distribution of a quantitative (numerical) variable collected, including its center, variability, and overall shape.	Fundamentals - In sixth grade, students should explore the conceptual idea of MAD - not the formula. - Students should be able to determine the number of observations from a context or diagram. - Students should be able to describe the distribution of a quantitative (numerical) variable collected, including its center (median, mean), variability (interquartile range (IQR), mean absolute deviation (MAD), and range), and overall shave	Terminology - Students should be able to apply their understanding of absolute value (rather than use operations on negative integers) in the context of MAD.	Strategies and Methods - Students should explore conceptually the measures of center (mean, median) and variability (interquartile range and range) for a set of numerical data gathered from relevant, mathematical situations and use these measures to describe the shape of the data presented in various forms.	Example - Arthur and Aaron are on the same $6^{\text {th }}$ grade basketball team. Both players have scored an average of ten points over the past ten games. Here are the students' number of points scored during each of the last ten games. Arthur: 9, 10, 10, 11, 11, 9, 10, 10, 10, 10 Aaron: 16, 18, 4, 3, 5, 13, 18, 3, 13, 7 Which student is more consistent? Possible Student Response/Solution: Arthur is more consistent because his MAD is smaller than Aaron's

		(symmetrical vs nonsymmetrical). - Data sets can be limited to no more than 10 data points when exploring the mean absolute deviation. - Students should be able to describe the nature of the attribute under investigation, including how it was measured and its units of measurement.			MAD; Arthur has less variability than Aaron.
6.NR.2.4	Design simple experiments and collect data. Use data gathered from realistic scenarios and simulations to determine quantitative measures of center (median and/or mean) and variability (interquartile range and range). Use these quantities to draw conclusions about the data, compare different numerical data sets, and make predictions.	Fundamentals - Students should be able to use quantitative measures of center and variability to draw conclusions about data sets and make predictions based on comparisons. - Students should be able to identify that each quartile represents 25% of the data set.		Strategies and Methods - Students should apply understanding of the measures of center (mean, median) and variability (interquartile range and range) to determine quantitative measures of center and variability, draw conclusions about the data, compare different-numerical data sets and make predictions using data gathered from realistic scenarios and simulations.	
6.NR.2.5	Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	Fundamentals - Students should understand the concept of outliers.		Strategies and Methods - Students should be able to analyze the shape of a data distribution and determine which measure of center and variability best describes the data based on the shape of the data and the context in which the data was gathered.	

[^2]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

6.NR.2.6	Describe the impact that inserting or deleting a data point has on the mean and the median of a data set. Create data displays using a	Strategies and Methods - Students should be able to analyze the shape of a data distribution and determine the impact single data points have on the data set represented visually.
	dot plot or box plot to examine this impact.	

7.PAR.4.10	Predict characteristics of a population by examining the characteristics of a representative sample. Recognize the potential limitations and scope of the sample to the population.

Strategies and Methods

- Students can generate questions about things they notice and wonder from a relevant situation. Questions posed should be ones that requires data that will vary.
- Students should have opportunities to create and answer statistical investigative questions about a population by collecting data from a representative sample, using random sampling techniques to collect the data.
- Students should be able to create a statistical investigative question that can be answered by gathering data from practical situations and determine strategies for gathering data to answer the statistical investigative question
- Potential limitations may include how the sample was selected and/or how the questions were asked.

7.PAR.4.11	Analyze sampling methods and conclude that random sampling produces and supports valid inferences.	Strategies and Methods $\bullet \quad$ Students should have opportunities to critique e Students should conclude when conditions of sa population.
7.PAR.4.12	Use data from repeated random samples to evaluate how much a sample mean is expected to vary from a population mean. Simulate multiple samples of the same size.	Fundamentals Students should use sample data collected to draw inferences.

Examples

- Estimate the mean word length in a book by randomly sampling words from the book. Gauge how far off the estimate is from the actual mean.
- Predict the winner of a school election based on randomly sampled survey data. Gauge how far off the prediction might be.

Vocabulary:

K12 Mathematics Standards Glossary

Box and Whisker Plot	Grouped Frequency Table	Mean	Median	Numerical Data	Skewed Data

Published: Month, Year
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

Published: Month, Year
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

What specific MYP objectives will be addressed during this unit?	Relationship between summative assessment task(s) and statement of inquiry:	List of common formative and summative assessments.
Criteria A (Knowing and Understanding) and Criteria D (Applying Math to real-world context)	Assessments will require students to organize and model the given data in order to draw conclusions regarding that population.	Formative Assessment(s): Unit 1 CFA Summative Assessment(s): MYP task and Unit Summative: Jose's Candy
Approaches to learning (ATL)		
Category: Self-Management Cluster: Organization Skill Indicator: - Keep and use a weekly - Set goals that are chall - Bring necessary equipm Cluster: Affective Skills Skill Indicator: - Demonstrate persisten	anner for assignments; ging and realistic; nt and supplies to class and perseverance	

[^3]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

Learning Experiences

Add additional rows below as needed.

Objective or Content	Learning Experiences	Personalized Learning and Differentiation
- 6.NR.2.2 Summarize categorical and quantitative (numerical) data sets in relation to the context: display the distributions of quantitative (numerical) data in plots on a number line, including dot plots, histograms, and box plots and display the distribution of categorical data using bar graphs. - 6.NR.2.3 Interpret numerical data to answer a statistical investigative question created. Describe the distribution of a quantitative (numerical) variable collected, including its center, variability, and overall shape.	The Histogram Challenge In this group activity, students will be given a large number line and various sized bars cut from cardstock to create a histogram that meets the criteria provided by the teacher. They must think about the meaning of "median" and "range" and understand what the bars and intervals of a histogram represent.	Concrete or virtual manipulatives can help to support students who are struggling with access.. Groups who struggle with a challenge will be asked questions that clarify their thought process and provide guidance. Students needing extension should be given the extension problems included in the task.
- 7.PAR.4.10: Predict characteristics of a population by examining the characteristics of a representative sample. Recognize the potential limitations and scope of the sample to the population. - 7.PAR.4.11: Analyze sampling methods and conclude that random sampling produces and supports valid inferences. - 7.PAR.4.12: Use data from repeated random samples to evaluate how much a sample mean is expected to	Random Dice Sampling Activity Students will be paired up and roll two dice and record their sums 20 times. They will examine the distribution of the sums. They will compare their sample with a larger sample to recognize the relationship between sampling of data and a population.	Students will collaborate with others to complete the task. Teachers will use guiding questions for struggling students.

[^4]vary from a population mean.
Simulate multiples of the same size.

Content Resources

Teaching Resources

Student Resources
Unit Interventions:

1. Distribution: Savvas Reteach Reteach Answer Key
2. Measures of Center: Savvas Reteach 8-2
3. Making a Histogram - Virtual Nerd: How to Make a Histogram

GA DOE Interventions

Extra Activities:

1. Illustrative Mathematics Activity - Comparing Test Scores

Published: Month, Year
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

[^0]: Published: Month, Year
 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

[^1]: Published: Month, Year

[^2]: Published: Month, Year

[^3]: Published: Month, Year

[^4]: Published: Month, Year
 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

